MISSOURI WESTERN STATE UNIVERSITY COLLEGE OF LIBERAL ARTS AND SCIENCES DEPARTMENT OF COMPUTER SCIENCE, MATHEMATICS, AND PHYSICS

CLASS SYLLABUS

I.	Course Number	Course Name	<u>Schedule</u>	Credit
	CSC384	Assembly Language	MW 1:00PM-2:20PM	3

- II. <u>Prerequisites:</u> CSC245 or CSC254 with a grade of C or better.
- III. <u>Course Description:</u> An investigation of the logical basis of a particular computer from the programmer's viewpoint. Machine representation of numbers and characters, instruction formats, machine operations and addressing techniques will be covered.
- IV. <u>Text</u>: Intro.TO 80x86 Assembly Language, Detmer, Edition 3rd 15, Jones+Bart,

ISBN 9781284036121

- V. <u>Course Objectives:</u>
 - a. The student learns the structure and organization of a computer system, by learning and using the assembler language of the system.
 - b. The student will examine the computer architecture of the Intel micro-processors.
- VI. <u>Course Outline:</u>
 - I. Basic Concepts

- A. ASM vs. High-level Languages
- B. Virtual Machine Concept (Optional)
- C. Data Representation
 - A. Binary and Hexadecimal Numbers
 - B. Character Codes
 - C. Complements of Binary and Hexadecimal Numbers
 - D. Addition and Subtraction of Complemented Numbers
 - E. Other Systems for Representing Numbers
- D. Boolean Operations

II. IA-32 Processor Architecture

- A. Basic Microcomputer Design
- B. IA-32 Processor Architecture
 - A. Pipelining and Superscalar Designs (Optional)
 - B. CISC vs. RISC Designs (Optional)
- C. IA-32 Memory Management
- D. Components of an IA-32 Microcomputer
- E. Input-Output System
- III. Assembly Language Fundamentals
 - A. Basic Elements of Assembly Language
 - A. Integer Constants and Expressions
 - B. Character and String Constants
 - C. Reserved Words and Identifiers
 - D. Directives and Instructions
 - E. Labels
 - F. Mnemonics and Operands
 - G. Comments
 - H. Examples
 - I. Program Template
 - B. How to Assemble, Link, and Run a Program
 - C. The Assembler Listing File and Map File
 - D. Data Definition Directives
 - E. Symbolic Constants
- IV. Data Transfers, Addressing and Arithmetic
 - A. Data Transfer Instructions
 - B. Addition, Subtraction
 - C. Data Related Operators and Directives
 - D. Indirect Addressing and Pointers
- V. Branching and Looping
 - A. JMP Instruction
 - **B. LOOP Instruction**
 - C. Array Examples Using LOOPs
- VI. Procedures
 - A. Linking to an External Library
 - **B. Stack Operations**
 - C. Defining and Using Procedures
 - D. Program Design Using Procedures

VII. Conditional Processing

- A. Boolean and Comparison Instructions
- **B.** Conditional Jumps
- C. Conditional Loop Structures
- D. Conditional Structures
- VIII. Integer Arithmetic
 - A. Shift and Rotate Instructions
 - B. Shift and Rotate Applications
 - C. Multiplication and Division Operations
 - D. ASCII and Unpacked Decimal Arithmetic
 - E. Packed Decimal Arithmetic
- IX. Strings and Arrays
 - A. Using String Primitive Instructions
 - **B.** Selected String Procedures
 - C. Two Dimensional Arrays
 - D. Binary Search
- X. Macros
 - A. Defining Macros
 - B. Invoking Macros
 - C. Conditional Assembly Directives
- XI. Floating-Point Processing
 - A. Floating-Point Binary Representation
 - B. Programming with Floating-Point Instruction Set
 - C. Floating-Point Emulation
 - D. Floating-Point and In-Line Assembly
- XII. Input/output BIOS Level Programming (Optional)
 - A. Keyboard Input
 - B. Video Programming Using INT 10h
 - C. Drawing Graphics Using INT 10h
 - D. Memory Mapped Graphics
 - E. Mouse Programming