Simple Interest:

\[I = Prt \]

\[A = P + Prt \quad \text{or} \quad A = P(1 + rt) \]

Compound Interest:

\[A = P(1 + i)^n \quad \text{or} \quad A = P \left(1 + \frac{r}{m} \right)^{mt} \]

\[A = Pe^{rt} \]

Annual Percentage Yield:

\[\text{APY} = \left(1 + \frac{r}{m} \right)^m - 1 \]

\[\text{APY} = e^r - 1 \]

Annuities:

\[FV = PMT \cdot \frac{(1+i)^n-1}{i} \]

\[PMT = FV \cdot \frac{i}{(1+i)^n-1} \quad \text{(Sinking fund payment)} \]

\[PV = PMT \cdot \frac{1-(1+i)^{-n}}{i} \]

\[PMT = PV \cdot \frac{i}{1-(1+i)^{-n}} \quad \text{(amortization formula)} \]

KEY:

- \(I = \text{Interest} \)
- \(P = \text{Principal} \)
- \(r = \text{rate (as a decimal)} \)
- \(t = \text{time in years} \)
- \(A = \text{Amount or future value} \)
- \(m = \text{number of compounding periods per year} \)
- \(i = \text{rate per compounding period (r/m)} \)
- \(n = \text{total # of compounding periods (m \cdot t)} \)
- \(\text{e} = 2.7183... \) (there is a calculator key for it)

- \(FV = \text{future value} \)
- \(PMT = \text{periodic payment} \)
- \(PV = \text{present value} \)
- \(r = \text{rate (as a decimal)} \)
- \(t = \text{time in years} \)
- \(m = \text{number of compounding periods per year} \)
- \(i = \text{rate per period (r/m)} \)
- \(n = \# \text{ of payments or periods (m \cdot t)} \)